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Abstract. There has been much work in the Information Extraction
field, particularly in the Named Entity Recognition task. However, for
the Portuguese language, the implementations still perform below the re-
sults for other languages, as shown by the HAREM conferences. The goal
of this work is to assess the current performance of well established tools,
namely Stanford CoreNLP, OpenNLP, spaCy and NLTK, against a Por-
tuguese dataset, specifically the HAREM gold standard collection. These
tools were used with an out-of-the-box approach, meaning without any
tuning. The results show that the referred tools can match the results of
Portuguese state-of-the-art tools, presented in the HAREM conferences,
specifically, Stanford CoreNLP with an F-measure of 56.10%, OpenNLP
with 53.63%, spaCy with 46.81% and NLTK with 30.97%. Furthermore,
a hyperparameter study was performed, improving over the default con-
figurations, for about 2% in each tool, and almost 35% in NLTK’s MaxEnt
classifier.

Keywords: natural language processing, named entity recognition, text
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1 Introduction

Named Entity Recognition (NER) is a sub-field of Information Extraction. Its
main purpose is to identify and classify entities from unstructured text. This
extraction is the first part of a typical information extraction pipeline, enabling
further information extraction methods, such as semantic analysis or relation
extraction. There is a need for having systematic evaluation, so that all NER
systems have the same standards when evaluating their performance.

There are multiple techniques proposed to rank NER systems based on their
ability to annotate text correctly. These techniques were defined and used in con-
ferences such as Message Understanding Conference (MUC) [1], Conference on
Natural Language Learning (CoNLL) [2], Automatic Content Extraction (ACE)
[3] and HAREM Avaliação de sistemas de Reconhecimento de Entidades Men-
cionadas (HAREM) [4]. These conferences not only differ in their evaluation



techniques, for example giving score to partial matches or only scoring exact
matches, but also on what is considered an entity, so they use different entity
class sets. This makes it hard to compare different tools which participated in
different conferences.

In this paper, we will present a structured approach for the consistent assess-
ment of the mentioned tools, in order to provide an out-of-the-box comparison of
their performance. And afterwards, a hyperparameter study in order to improve
the baseline performance.

2 Related work

Initial work in this field was based on pattern matching techniques, for instance
Rau [5] extracted company names with rules like the detection of company suf-
fixes, such as “Inc.” or “Corp.”. Afterwards, dictionary-based approaches began
to appear, where the main extraction algorithm was based on matching the words
in a text with a gazetteer. An example of this approach was done in Portuguese
by Sarmento [6], using the gazetteer REPENTINO [7]. Although this kind of
extraction techniques provided good precision, results in terms of recall and F-
measure where low and, furthermore, these techniques are difficult to manage
because rules and dictionaries need to be constantly updated. This lead to the
development of machine learning algorithms, where the most used methods are
probabilistic techniques, such as Hidden Markov Models, for example by Bikel
et al. [8], Maximum Entropy Models, like the framework by Carvalho [9], and
Conditional Random Fields, with a Portuguese example by Amaral and Vieira
[10]. Throughout the years there was a shift in focus, where machine learning
techniques started to gain more interest. This is due to the scalability of these
techniques and the amount of work required, however data in specific domains
remains scarce. Machine learning supervised approaches continue to be the most
used techniques, but recently many semi-supervised approaches, involving boot-
strapping [11], started to appear, as they require less training examples.

The HAREM [4] conference’s main objective was to evaluate the current
state of the art for NER in the Portuguese language. Apart from the HAREM
conference, there have been some experiments in evaluating NER tools with
the HAREM dataset, for instance by Amaral et al. [12] who compared NERP-
CRF with other publicly available tools for the Portuguese language. Other
example is by Rocha et al. [13], who compared PAMPO with other tools. Both
of these comparisons used a subset of HAREM’s categories. Another comparison
using some of the tools of this experiment, for English, was done by Jiang [14],
showing that Stanford CoreNLP had the best result, in concordance with our
experiments.

2.1 Tool descriptions

The main purpose of this experiment was to compare some of the main tools
capable of performing NER in multiple languages, with particular focus on the
Portuguese language. The main criteria for choosing the tools were:



– The tool has to be completely free.
– The tool has to be language and domain independent.
– The tool has to allow training a custom model for NER, with custom entity

classes.

With these criteria in mind, we chose four different, well-established tools:
Stanford CoreNLP [15], OpenNLP [16], spaCy [17] and NLTK [18]. These tools
are described in Table 1, which shows that all are freely available, use either
Java or Python as the main language and, apart from already having multiple
default language models, all allow training with other languages.

Table 1. Overview of the assessed tools.

Tool License Version Language NER classifiers
Default language

models

Stanford
CoreNLP

GNU General
Public License

3.7.0
(2016)

Java
Conditional

Random Fields

Arabic, Chinese,
English, French,
German, Spanish

OpenNLP Apache License
1.7.2

(2017)
Java Maximum Entropy

Dutch, English,
Spanish

spaCy MIT License
1.7.2

(2017)
Python

Thinc
linear model

English, German

NLTK Apache License
3.2.2

(2016)
Python

Naive Bayes,
Decision Tree,

Maximum Entropy
English

Neither of these tools have a Portuguese model for NER, so all of them require
training with a Portuguese corpus, such as HAREM. Apart from spaCy, all tools
use well known algorithms to perform NER, for instance CRF and Maximum
Entropy. spaCy uses its own implementation of a structured average perceptron,
called Thinc [19] linear model.

3 The HAREM gold standard collection

HAREM is an evaluation contest for NER in Portuguese. There were two main
HAREM events, in 2005 [4,20] and 2008 [21]. Both provided gold standard col-
lections and, for this experiment, we used only the second one.

3.1 Corpus description

HAREM’s gold standard collection [22] is a collection of Portuguese texts from
several genres, such as web pages and newspapers, in which named entities have
been identified, semantically classified and morphologically tagged in context.
This collection is composed mainly of news documents (about 35%) and didactic
documents (about 23%). It defines three levels of entity annotations, namely
categories, types and subtypes.



There were 10 categories identified, specifically Works of art (Obra), Event
(Acontecimento), Organization (Organizacao), Misc (Outro), Person (Pessoa),
Abstraction (Abstracao), Time (Tempo), Value (Valor), Local (Local) and Thing
(Coisa). Apart from the categories, it has a total of 43 types and 21 subtypes.1

Table 2 shows the number of named entities in each category in the second
HAREM gold standard collection. Pessoa is the most common category with
2,035 words, and Outro is the least common, with only 148 words. This gold
standard collection has a total of 129 documents, divided into two Portuguese
variants, for Portugal and Brazil, as shown in Table 3, being Portuguese from
Portugal the main variant.

Table 2. Number of named entities in each
category. Values from do Amaral et al. [12].

Categories
Number of

entities
%

Pessoa 2,035 28%
Local 1,250 17%
Tempo 1,189 16%
Organizacao 960 13%
Obra 437 6%
Valor 352 5%
Coisa 304 4%
Acontecimento 302 4%
Abstracao 278 4%
Outro 148 2%

Total 7,255 100%

Table 3. Document distribution. Table
from Mota et al. [23].

Portuguese
variant

Number of
documents

%

pt PT 93 72.09%
pt BR 36 27.91%

Total 129 100%

3.2 Corpus transformation

The gold standard collection is available in XML format, and contains informa-
tion that was not used in this experiment. The collection cannot be directly used
as input to the selected tools, so it had to be transformed for each tool.

Initial transformation This first transformation was applied for all tools.
First of all, the tag OMITIDO was ignored in the HAREM evaluation, so it

was stripped from the gold standard collection, keeping the text without any
annotation. Then, since HAREM provides alternatives to the annotation of en-
tity tags, regarding the entity boundary, using the ALT tag — in other words,
allows multiple annotations to the same span of text with different boundaries
—, we stripped these tags, keeping only the alternative which had the highest
amount of entity tags, and choosing the first alternative when there were no tags
inside the ALT tag. This was required because the selected tools cannot handle

1 See full hierarchy table at http://www.linguateca.pt/aval conjunta/HAREM/-
tabela.html - Accessed on: 2017-06-01.

http://www.linguateca.pt/aval_conjunta/HAREM/tabela.html
http://www.linguateca.pt/aval_conjunta/HAREM/tabela.html


alternative annotations. Apart from the alternatives using the ALT tag, there
were alternatives in the annotation, regarding the category, type and subtype of
an entity. In this case, we selected the first alternative for each case. Also, there
were tags which had no categories, and were identified only as an entity. In this
case, the tag was stripped.

Since the tools only allowed one level of entities, we flattened the levels,
producing three different outputs: one with only the categories, one with only
the types and another with only the subtypes. For scripting purposes, the types
and subtypes were concatenated to keep the semantics and context inside the
parent category (e.g. “LOCAL HUMANO PAIS”).

Finally, apart from the category attribute, all other attributes were removed.
For evaluation purposes, this dataset was divided into folds for repeated cross
validation (see Section 5).

4 Main steps to run each tool

Each tool has a particular set of requirements in order to train a NER model
and then perform NER. The steps for each tool are presented next, namely the
required input format, the steps for converting HAREM into that format, how
to train the NER model, how to perform NER, and finally how to convert it to
the CoNLL evaluation format.

4.1 Stanford CoreNLP

CoreNLP requires a tokenized file, where each line contains a token and its entity
class separated by a tab character. This entity class is the class of the entity for
entity tokens, and an “O” class for other tokens. We used the Stanford CoreNLP
tokenizer edu.stanford.nlp.process.PTBTokenizer to tokenize the text. The
entity classes in XML were also tokenized in the process, so afterwards we “de-
tokenized” them and we looped through the file adding the entity classes from
the first match in an entity tag to a match in the closing tag. Every token outside
this, was tagged “O”. The classifier was trained using the command:

java -cp stanford -corenlp.jar edu.stanford.nlp.ie.crf.\

CRFClassifier -prop <file.prop >

where file.prop sets the hyperparameters and features to use and the path for
the training file and output model.

To classify text documents, we used the following command:

java -cp stanford -corenlp.jar edu.stanford.nlp.ie.crf.\

CRFClassifier -loadClassifier <ner -model.ser.gz > --\

testFile <file_test.txt >

where file test.txt represents the input unannotated text to be classified.
Then, after performing the Named Entity Recognition (NER), we added IOB
tags to the output for it to be comparable in the evaluation stage.



4.2 OpenNLP

This tool requires a sentence per line as input, where entities are annotated
with a starting tag (<START:tag-name>) and an end tag (<END>). First, we
converted the HAREM XML entity tags to the OpenNLP format. Then, using
NLTK’s sentence segmentation module, the dataset was segmented by sentences.
Since this segmentation was not perfect, we had to join faulty segmentations
by checking if every open entity tag had a corresponding closing tag and vice
versa, in each sentence. When they had no corresponding tag, we joined the
current sentence with the previous sentence. Furthermore, we had to make sure
that there was a space character before and after each tag, or else OpenNLP’s
interpreter would not work. To train the model, we had to run the command:

opennlp TokenNameFinderTrainer -model <model.bin > -lang <pt >\

-data <training_data.txt > -encoding <UTF -8>

and to classify the text the command was:

opennlp TokenNameFinder <model.bin > < <corpus_test.txt > > \ <

output file >

Finally, after performing NER, we converted the output from the OpenNLP
format to the CoNLL format, adding IOB tags.

4.3 spaCy

spaCy requires that the input dataset is in the standoff format, that is to say,
there have to be two files: one with the plain text, and another with the entity
annotations, containing a tab separated entry with the beginning and ending
positions of the entity along with its class. The text had to be separated in
sentences. Since we had already converted HAREM to the OpenNLP format,
we used it to transform it to standoff. The transformation was done using the
following steps:

1. Search until <START:tag> tag
2. Save starting position
3. Delete matched tag
4. Search for <END> tag
5. Save end position
6. Delete matched tag
7. Save standoff = (beginPos, endPos, tag)
8. Repeat from step 1 until no matches occur
9. Output to a tab separated file

The resulting files were then used to train a NER model in spaCy. The
training script was based on an example script in spaCy’s repository, with the
additional preprocessing task of converting to the standoff format. The main
NER classifier was changed from EntityRecognizer to BeamEntityRecognizer.
After the NER process, the result was converted to the CoNLL format with IOB
tags for evaluation purposes.



4.4 NLTK

This toolkit not only requires that the input dataset is in the CoNLL format
with IOB tags, but also that it has the associated POS tag. In other words, the
input file must be a tab separated file, where each line has the token, the POS
tag and the entity tag in IOB format. This aspect required three major steps,
namely tokenizing and performing POS tagging, tokenizing while keeping the
entity tags, and joining both files. The steps for this were the following:

1. Tokenize and POS tag

– Remove all tags from the HAREM dataset, in order to tokenize the text

– Tokenize the dataset using nltk.tokenize.word tokenizer

– Using the resulting tokenized text, perform POS tagging

• Train POS model using floresta corpus from nltk.corpus

• POS tag resulting file from tokenizer step

2. Tokenize while keeping the entities

– Tokenize the dataset using nltk.tokenize.word tokenizer

– Join consecutive tokenized entity tags

– Transform dataset, matching the entity tags using regular expressions,
assigning tags to each token

• For each token, after an entity tag, assign a B-tag
• For each token after the first entity token (previous step), or after

an Inside (I) token, assign an I-tag
• Assign an O tag for other tokens

3. Join POS tagged file with entity tagged file

– Iterate through both files simultaneously

– For each line, set token POS-tag IOB-entity-tag

To train the NLTK’s classifiers, we used NLTK trainer2. This allowed us to
run the following command:

python train_chunker.py <path -to-training -file > [--fileids\ <

fileids >] [--reader <reader >] [--classifier <classifier\

>]

We had to choose a different document reader, nltk.corpus.reader.conll-
.ConllChunkCorpusReader, since the training files were in the CoNLL for-
mat. For this reader, we had to specify the entity categories in the NLTK
trainer init file. Running the command resulted in a serialized model saved
in the pickle format. In order to classify text, the model had to be loaded,
the dataset to be classified was required to contain POS tag annotations
and then classified with chunker.parse(tagged). The parser returned the
result in a tree format, which was converted to the CoNLL format using
nltk.chunk.util.tree2conlltags(ner result).

2 https://github.com/japerk/nltk-trainer

https://github.com/japerk/nltk-trainer


5 Evaluation

The method we used to assess the performance of each tool is described next.
Each tool has its own evaluation scheme, however they are not directly com-
parable. To make it comparable we used a common evaluation scheme, the one
used in the CoNLL [2] conference, where credit was only given to exact-matches
or, in other words, both entity tags and boundaries had to be correct for it to
count as a correct match.

Evaluation was done using the conlleval3 script, taken directly from the web-
site for the conference’s occurrence in 2000. The script requires a file in the
CoNLL format, with both the output of the NER tool and the gold standard.
To be more precise, it is a space separated file, where each line contains a token,
the gold standard tag and the predicted tag. It accepts files with or without IOB
(Inside, Outside, Beginning) tags, being that, for the latter, each identification
is treated as a single token entity. For this experiment, we evaluated the results
with IOB tags.

Since not all the tools outputted the results with IOB tags, we added them
whenever they were missing. After each run, we had to merge the outputs with
the gold standard. For this merge to be correct, we had to use each tool’s tok-
enizer for the testing set, or else the merge would not be successful as the tokens
would not match correctly to the gold standard set.

For robustness, we used repeated 10-fold cross validation, with 4 repeats,
and calculated the average of the precision and recall, and the macro-average
for the F-measure, from every run. In other words, in each repeat, we split the
dataset into 10 equal sized folds (in terms of documents), with different training
and testing sets each. Then we ran each tool for each fold and for each repeat,
and also for each level (categories, types and subtypes). Resulting in a total of
4 repeats× 10 folds× 3 levels× 4 tools = 480 runs.

Finally, after running all the folds and repeats for each tool, that is to say
training the models, and performing NER on the testing set, we evaluated the
outputs using the CoNLL script and then computed the average for each level.
This resulted in an average for each tool, each level, and each entity tag. The
results are presented in section 6.

6 Results

The results from the repeated 10-fold cross validation are presented next. Ta-
ble 4 represents the comparison among the tools for the highest entity class
level (categories). It shows the average of three metrics (precision, recall and
F-measure) for a single level of entity annotation, namely categories. Stanford
CoreNLP takes the lead with an F-measure of 56.10%, followed by OpenNLP
with 53.63% and then by spaCy (46.81%) and NLTK (30.97%). The results for
NLTK are the ones obtained using the Naive Bayes classifier. It was NLTK’s

3 See http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt - version:
2004-01-26

http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt


best result but it was the lowest score among all tools, below the other tools
performance.

Table 4. Results for categories only.

Tool Precision Recall F-measure

Stanford CoreNLP 58.84% 53.60% 56.10%
OpenNLP 55.43% 51.94% 53.63%
SpaCy 51.21% 43.10% 46.81%
NLTK 30.58% 31.38% 30.97%

Table 5 shows the comparison between the tools but with the average F-
measure for all the levels. The ranking was similar to the categories results. In
other words, Stanford CoreNLP remains on top in the category level, followed
by OpenNLP, then spaCy and finally NLTK, in all levels. Again, NLTK’s results
remain far below in comparison to the other tools. Naive Bayes remained the
best scoring algorithm amongst NLTK’s algorithms. It is important to note that
Stanford CoreNLP is highly computationally demanding, so we were not able
to run it with the default configuration for the remaining levels, i.e. types and
subtypes.

Table 5. F-measure for all levels.

Tool Categories Types Subtypes

Stanford CoreNLP 56.10% - -
OpenNLP 53.63% 48.53% 50.74%
SpaCy 46.81% 44.04% 37.86%
NLTK 30.97% 28.82% 21.91%

Since NLTK provides different classifiers to perform NER, we present in Ta-
ble 6 the average results for each classifier, for the highest level (categories).
The NaiveBayes and DecisionTree classifiers have similar results, although
NaiveBayes has slightly better results. Maxent (Maximum Entropy), however,
performed worse than the other classifiers, with almost zero recall and F-measure.
One possible explanation for these results is the default number of iterations
(ten) that the algorithm goes through, or even the features used for training.
OpenNLP’s classifier also uses Maximum Entropy and it performed better, but
it was configured to use 100 iterations in the default configuration.

6.1 Hyperparameter study

In order to improve the results obtained in the default configuration, we per-
formed a hyperparameter study, where we checked the effects of some individual
hyperparameters for each tool. Since the tools require lots of time to train NER
models, it was not possible to perform repeated 10-fold cross validation as before,



Table 6. Results for the category level in NLTK, for all classifiers.

Classifier Precision Recall F-measure

NaiveBayes 30.58% 31.38% 30.97%
Maxent 18.19% 0.58% 1.13%
DecisionTree 21.84% 25.72% 23.62%

so we only perform repeated holdout, again with 4 repeats, and a split of 70%
training and 30% testing. This lead to different values for default configurations,
in comparison with the baseline study. Table 7 presents a summary of the best
obtained results, together with the default results.

Table 7. Summary results for all tools, category level.

Tool
Default

F-measure
Best Configurations

Best
F-measure

OpenNLP 50.90%
cutoff=4 52.38%
iterations = 170 51.52%

SpaCy 45.70% iterations=110 46.60%

Stanford CoreNLP 54.14% tolerance=1e-3 54.31%

NLTK DT 26.14%
entropy cutoff=0.08 26.36%
support cutoff=16 26.18%

NLTK ME 1.11%
min lldelta=0,
iterations=100

35.24%

Apart from NLTK’s Naive Bayes classifier, all tools allowed tuning some hy-
perparameters. As we can see, for all tools we managed to improve the default
performance, in particular, for the NLTK’s Maximum Entropy classifier, there
was an improvement of almost 35% (F-measure). This leads us to conclude that
the default configurations for this classifier are not good, at all. The best per-
forming models are published in INESC TEC’s CKAN research data repository
[24]. These models were trained with the HAREM dataset, producing three dif-
ferent models, one per entity level, for each tool, and can be directly used for
Portuguese NER.

7 Conclusions and future work

With this experiment, it became clear that it is possible to take well established
tools and use them to perform NER in Portuguese corpora. HAREM proved to
be a good resource to be used as training and test sets for the assessed tools.
However, since it is not updated since 2010, and given that the Portuguese
language suffered alterations, with the orthographic agreement, future work on
this area would be to create an updated gold standard collection.

This experiment provided a comparison for the baseline configuration of each
tool, and showed the best individual configuration. In order to further improve



the performance, one has to experiment with feature engineering for each algo-
rithm implementation. While it is important to note that these results are not
directly comparable to the ones in HAREM since different methods of evalua-
tion were used, the results showed that these tools perform similar to the results
achieved in the HAREM conferences, with the best F-measure of 56.10% by
Stanford CoreNLP, with a difference of only 1% in the highest scoring partici-
pant in HAREM. Also, the hyperparameter study proved to be beneficial, as we
managed to improve on the baseline results.
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